Build an Op Amp SPICE Model from Its Datasheet – Part 1

Why do you need to build your own Op Amp model? Most Op Amp manufacturers have SPICE models for their components and make them available for free. Then why should you know how to build one? Well, not everything has a model and that is why, sometimes, you have to build your own. Also, it may be necessary to study a circuit to see what happens if you change the Op Amp slew rate or bandwidth, offset, and so on. Sometimes the manufacturer own model does not work, as a user found out and posted a question in this forum. I told him that the model has a bug and advised him to build his own.

No matter the reason, building your own model is fun and rewarding and can only add to your overall understanding on how an Op Amp works. One note of caution. The model described here is a behavioral model. This means that the model will mimic the op amp functionality, but will not have any transistor or any other semiconductor SPICE models.

Read more…

An Ideal Operational Amplifier Simulation Model

You worked hard on your schematic, you calculated everything, you feel confident that it will work.  To be sure though, before committing the schematic to copper, you want to simulate it.  You develop a SPICE simulation schematic and, surprise, things don’t work.  What’s going on?

You start searching for bad connections in the simulation schematic.  You check the power supplies and the circuit biasing.  Finally, in desperation, you suspect the operational amplifier model that you downloaded from the manufacturer website, or found in the SPICE program library.  How do you troubleshoot your circuit?

First, split your circuit into small subcircuits, like a one op amp circuit.  Second, take aside, on a different simulation page, one of these subcircuits.  Is that working?  If that circuit is a non-inverting amplifier, as an example (Figure 1), and the output voltage is all over the place except your expected value, than replace your op amp with an ideal one and see if that circuit works.

Read more…

Using the Summing Amplifier as an Average Amplifier

Sometimes people ask how can one use a summing amplifier as an average amplifier. The answer is simple, provided that one knows what kind of average one needs.

The summing amplifier can output the average of two, three or more signals. This is different than a signal average. The summing amplifier cannot, for example, output the average of a triangle signal. For that, you need an integrator to perform the average in the analog realm, or you need to sample the signal and calculate the average with a microcontroller. This type of average is the signal average in the time domain. I will write an article about the average of a signal in a near future.

In this post I will show you how to average two or more signals with a summing amplifier. In How to Derive the Summing Amplifier Transfer Function I wrote that the summing amplifier shown in Figure 1

Read more…

Differential Amplifier Output Common-Mode Voltage Calculator

A differential amplifier frequent use is the amplification of the voltage difference between its inputs, while rejecting the common-mode level.  However, the output common-mode level cannot be zero.  The operational amplifier technological limitations, as well as the outside resistor tolerances let the common-mode voltage to make it to the amplifier output as an output error.  As a consequence, the amplifier output voltage is the input signal difference times gain, plus the output common-mode voltage.

Read more…

How to Design a Circuit from its Transfer Function Graph

Sometimes all we know about a circuit is its transfer function graph.   The transfer function might look like the one in Figure 1.  How can we design a circuit so that its input-output behavior will match the graph?

Figure 1

The design starts with the mathematical form of the transfer function.  This is a linear function, with the general form of a first order polynomial function.

Read more…

Design a Bipolar to Unipolar Converter with a 3-input Summing Amplifier

Since the publication of Design a Bipolar to Unipolar Converter to Drive an ADC, several readers contacted me with requests to help in solving their particular converter. The common problem they had was the fact that the components’ calculation resulted in a negative value for at least one resistor.

To provide a solution, first we need to understand the root cause of the problem. Let’s take one of the circuits I received and analyze it.

The reader wrote that he would like to drive an ADC with the input range of 0 to 2.5V from a signal with the range of –5V to +5V, connected at V1 (see Figure 1).

Read more…

Summing Amplifier Calculator

Bipolar to Unipolar Converter Example

The calculator solves the summing amplifier resistors based on the input and output voltage range requirements. It is a great tool to design a bipolar to unipolar converter, as an example and other circuits.

Enter the input range, Vin1 to Vin2, the output range, Vout1 to Vout2 and a reference voltage Vref which helps in adjusting the common-mode level of the amplifier. Since the 2-input summing amplifier has 4 resistors, you need to choose two resistors, R1 and R3, and calculate R2 and R4. For more details about this calculator read How to Design a Summing Amplifier Calculator.

Read more…

Show Buttons
Hide Buttons
'